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Abstract

The n-queens problem is a well-known problem in mathematics, yet a full search for n-queens solutions has been tackled until
now using only simple algorithms (with the exception of the Rivin–Zabih algorithm). In this article, we discuss optimizations that
mainly rely on group actions on the set of n-queens solutions. Most of our arguments deal with the case of toroidal queens; at the
end, the application to the regular n-queens problem is discussed, and also the Rivin–Zabih algorithm.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The search for solutions to the n-queens problem, i.e. the placing of n queens on an n × n chessboard so that none
attacks any other, is well known. The availability of computers since about 1960 has given it a new impetus. Nowadays
the n-queens problem is often presented in computer science courses and there it frequently serves as an exercise.

However, an astonishing aspect of the methods used currently for a complete search is that—as far as I know, and
with the exception of the Rivin–Zabih algorithm—they are not very advanced. The n-queens problem is seen rather as
an example which shows that backtracking algorithms are of little help in problems with exponential growth. In 1999
the numbers of solutions were only known for boards up to 23 × 23, both for the regular n-queens problem and for the
variant with the board wrapped round a torus. Additionally, I know of no attempt to enumerate the solutions.

It seems that the large number of solutions is a deterrent to any enumeration of them. There are two possible
approaches to dealing with large sets: one way is to consider the elements of the solution set as chance results; but those
are not so interesting and one is only concerned with calculating the total number, either exactly or asymptotically, or
with the frequency with which they appear in a larger set. This is the method presently used in solutions to the n-queens
problem. The other possibility is to classify the elements of a solution set and to find relationships between them. Group
actions are an especially potent tool here. This paper describes the first steps along this way.

The words ‘not so interesting’ should not be taken literally. Indeed, there are about 30 entries in the bibliography of
the n-queens problem of Prof. Kosters (http://www.liacs.nl/∼.kosters/nqueens.html), and the work in that direction has
been fruitful in the study of constraint-satisfaction problems. Work in this direction is probably even more interesting
for similar real-world applications than this article. Yet, while the subject is the same, the perspective is quite different.
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Fig. 1. A queen and the attacked cells in the regular variant.

Fig. 2. A queen and the attacked cells in the torus variant. Cells that are threatened by torus queens only are marked with ‘x’. In this way, the
completion of the diagonal becomes evident.

On the one hand, I want to show in this article how the search can be accelerated considerably by simple programming
improvements and, on the other hand, how one can make much more use of symmetries, particularly in the torus variant
of the problem. Using these methods I have been able to calculate the next solution sets for the torus problem with
only moderate computing power: T23 was already known (almost 129 × 106), new results are T25 (almost 2 × 109),
T29 (almost 606 × 109) and most recently also T31 (just over 13.4 × 1012).

My method saves the solution sets in a format which allows the enumeration and investigation of the individual
properties of the solutions. It saves a complete transversal, i.e. one solution for each orbit, under action of the largest
possible group.

The aspect of symmetry was already used in a weak sense in the classical case, the normal queens problem on an
8 × 8 board; here there are 92 solutions and one usually enumerates 12 of them, from which the others are generated
by rotation and mirroring, i.e. the action of the dihedral group D4. The result, which reduces these 12 cases through
action of larger groups (congruence, similarity) to 6 and then to 4, seems to be new. The fact is also hardly mentioned
that for the torus variant and n < 13 there is only one trivial solution using the action of the affine group.

To be more specific we come to an informal definition of the problem. The n-queens problem has two major variants:
the regular n-queens problem, and the toroidal n-queens problem, also called the modular n-queens problem. For the
definition of both variants, we cite Rivin et al. [2], the article that summarizes the basic facts on the n-queens problem.
We start with the regular variant:

The n-queens problem asks how many ways can one put n queens on an n × n chessboard so that no two queens
attack each other. In other words, how many points can be placed on an n×n grid so that no two are on the same
row, column or diagonal (see Fig. 1).

And for the toroidal n-queens problem:

. . . a more tractable problems seems to be the toroidal n-queens problem: How many ways can one place n queens
on an n × n chessboard so that no two queens can be on the same row, column or extended diagonal.
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The term ‘extended diagonal’ needs some explanation. Two ideas may be helpful in understanding it. The first is to
repeat the chessboard endlessly in the plane, with period n for both rows and columns, as is shown in Fig. 2.

The second idea is to wrap the chessboard on a cylinder, by identifying the left and right borders, and then to form
a torus from the cylinder, identifying top and bottom borders.

The rest of this section gives formal definitions of sets, groups and mappings used in the paper and ends with a formal
definition of the full sets of solutions (Qn for the regular n-queens problem and Tn for the toroidal n-queens problem).

The simple algorithm used until now is given at the beginning of Section 2, and improvements to it are described
step by step in the rest of Section 2. The first two (Sections 2.2 and 2.3) are just programming techniques and mainly
of interest in computer science; the other sections extend symmetry arguments and are interesting from a mathematical
point of view.

Most of the improvements are concerned with the toroidal problem. Section 3 shows in more detail how this was
applied to the computation of the set of torus solutions for n= 29(T29). At the end, the results are given in some detail,
including results for the performance of the various improvements.

The alternative approach of Rivin and Zabih, which does not use backtracking, is discussed in Section 4.
Section 5 discusses some modifications that are necessary to handle the regular n-queens problem with the ideas

developed for the torus variant.

1.1. Sets and groups of interest

The main idea of the improvements is to use group actions. That means that some groups act on some sets. Here we
introduce these sets and groups.

Starting point for that is the chessboard; we take Fn := Zn × Zn as the set of cells of the chessboard; Zn means
{0, . . . , n − 1} in this paper, either as set or as group or as ring, depending on the context.

Important subsets of Fn are the diagonals. We distinguish diagonals to the left and to the right, calling them either
diagonals or anti-diagonals. The numbering is different for the regular and the torus variant. To keep it general, we use
numbers forming a ring U for numbering these (anti-)diagonals. Depending on whether we are handling the regular
n-queens problem or the toroidal, we use for U either the ring of integers Z or the ring of integers modulo n, Zn.
Taking U with its ring structure means that addition and subtraction also depend on U , i.e. in the torus variant, sums,
differences, and products are taken mod n.

Further, we use four projections pr, pc, pd and pa from Zn × Zn to U which map a cell of the board to its row, its
column, diagonal or anti-diagonal, respectively.

pr(x, y) = y, (1)

pc(x, y) = x, (2)

pd(x, y) = x − y, (3)

pa(x, y) = x + y. (4)

The groups of interest consist of movements which map the chessboard onto itself. These movements must be
reversible, i.e. they are bijective mappings Fn → Fn.

Groups M and D4: The most simple nontrivial group M consists of the identity map and the vertical reflection S
only, being isomorphic to Z2. S is defined by (x, y) �→ (x, n − 1 − y).

Next, we include the 90◦ rotation in the group. Doing that, we get the horizontal reflection and also reflections at the
(anti-)diagonal. That gives the dihedral group D4. That is the group of congruent mappings within the given border, i.e.
without shifts on the torus. This group has eight elements, and is generated by the two elements R (rotation by 90◦)
and S (vertical reflection) with the relations R4 = 1, S2 = 1, and S ◦ R = R3 ◦ S.

Group D4,n: For the torus problem, we can start with the group of all shifts i.e. Zn × Zn in mathematical notation.
It is an abelian group, generated by the horizontal shift H and the vertical shift V with the relations Hn = 1, V n = 1,
and H ◦ V = V ◦ H .

It is more natural, however, to go to a group containing both previous groups. This way, we come to the group D4,n

of all congruent mappings on the torus. The new group has D4 × Zn × Zn as underlying set but it is not the product
group. Instead, we have the additional relations S ◦H =H−1 ◦S, S ◦V =V ◦S, R ◦H =V ◦R, and R ◦V =H−1 ◦R.
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An element of D4,n is given by a triple (th, tv, d) where th and tv ∈ Zn are the horizontal and vertical translation,
respectively, and d is some element from D4, i.e. a rotation or reflection.

Group Simn: Further, we can add central extensions ca to the movements

ca : (x, y) �→ (ax, ay). (5)

We can use ca if their factor a is a unity in the ring Zn. That is equivalent to gcd(a, n) = 1. If the factor were no unity,
the mapping would not be bijective.

There is a group which contains only these central extensions. The composition ca ◦ cb gives the central extension
cab. More interesting is the group generated from these central extensions and shifts, rotations and reflections. In this
way, the congruent motions are generalized to similar motions. We call that group Simn.

An element of Simn is given by a quadruple (a, th, tv, d) where a is the expansion factor, 1�a < n/2, gcd(a, n)=1,
and the other parts are as above translation components, and rotation or reflection.

Group Affn: Finally, the largest group that we consider in this article is the group of all affine bijective mappings of
Fn which we call Affn.

There is a chain of inclusion of these groups:

M ⊂ D4 ⊂ D4,n ⊂ Simn ⊂ Affn. (6)

The two groups of torus shifts (without rotations and reflections) and of central expansions do not fit into this chain;
however, they are contained in D4,n and Simn, respectively.

Note that all motions, i.e. all elements of these groups, can be described by 3 × 3 matrices if we append to each
cell of Fn = Zn × Zn a third coordinate which always has value 1. Elements of the last and largest group, Affn, are
described by a matrix(

a11 a12 t1
a21 a22 t2
0 0 1

)
, (7)

where aik and ti are in Zn, and the determinant a11a22 − a21a12 is a unity in Zn. t1 and t2 describe the translation part
of the affine motion.

Having defined the chessboard and the groups acting on it, we come to derived actions. For that, we consider—more
generally—subsets of Fn = Zn × Zn. For instance, solutions for the n-queens problem are subsets of Fn.

To every action of the above groups on Fn, there is also a natural action on the power setP(Fn) (see, for instance, [1],
2.1.10 in Section 2.1, or at the beginning of Section 5.3). In that action, a motion � maps the set of cells {fi |i=0 . . . k−1}
to {�(fi)|i = 0 . . . k − 1}.

We denote by Pk(Fn) the set of subsets of Fn having k elements. So, we have a decomposition

P(Fn) =
⋃

0�k �n2

Pk(Fn) (8)

(k lies in the range 0 to n2 since Fn has n2 elements).
The groups of movements given above act also on every Pk(Fn). To see that, we need only check that a subset of k

elements is mapped by a motion � to a subset of k elements; that is obvious as all � are bijective.
The n-queens solutions lie inPn(Fn). Mostly, we are interested in a smaller subset of it. That subset corresponds to

the ‘n-rook-solutions’, and is given by the graphs of all permutations. Usually, the set of permutations of n elements
is given by the symmetric group Sn. At this point, we emphasize that in all the following text the symmetric group is
taken only as a set, not with its group structure. We use actions of the above groups on the set Sn but that should not
be confused with group operations in Sn.

Formally, we have the imbedding which maps every permutation onto its graph

Sn → Pn(Fn), p �→ {(i, p(i))|0� i < n}. (9)

We denote its image by Sn.
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It is easy to check that M, D4, D4,n and Simn act on Sn while Affn does not. A counterexample is the shear mapping
s : (x, y) �→ (x, x − y) which is in Affn, and the identity id of Sn, for n > 1. id is the diagonal {(k, k)|0�k < n}, and
its image under s is the zero row {(k, 0)|0�k < n} which is not in Sn.

A few other subsets of P(Fn) or Pn(Fn) will be introduced as needed.

1.2. Formal definition of the problem

In short, both variants of the n-queens problem ask for a subset of the symmetric group Sn, for some given n ∈ N.
These subsets are called Qn for the regular variant and Tn for the toroidal variant.

For the elements p of these subsets, we request the following additional property: both pd ◦ (id×p) and pa ◦ (id×p)

are injective.
The search for these solutions will use group actions on Qn and Tn.
Again, it is easy to check that M and D4 act on both Qn and Tn. The groups D4,n and Simn act on Tn, but not on

Qn; that is just the formal way of saying that a regular n-queens solutions cannot be shifted or expanded.

2. Improvement steps

This section is devoted to the algorithm for finding Qn or Tn.
The following point is a little unusual: as we describe the features and ideas of the author’s program, we also give

details of the syntax which activates these features. To give concrete examples, we refer to the syntax in the next section
when describing how concepts were combined in the search for T29. The syntax is otherwise not of interest.

2.1. The basic algorithm

The basic algorithm is a standard example for backtracking, or even an exercise in many lectures in computer science.
The author took it as a starting point, improving it step by step.

Describing the algorithm, we use the word ‘free’ in two meanings: We call a cell ‘free’ if it is not threatened by any
queen already placed. For a line (row, column or (anti-)diagonal), ‘free’ means that no queen is placed on that line.

The basic algorithm places the queens on the board row by row, starting with an empty board; it consists of the three
main steps:

Step 1: Generate a list of the free cells in the next row. If there are none, backtrack, i.e. go to step 2 of the previous
row.

Step 2: Place a queen on the next free cell, and proceed with step 1 for the next row, if there is a next row. Otherwise,
proceed to step 3. If the list of free cells is exhausted, backtrack, i.e. remove the queen on the previous row and continue
with step 2 in the previous row.

Step 3: If you have queens on all rows, you have a solution; count it or store it, then backtrack.
There are many different versions of how this algorithm is implemented. Some of the publications on the n-queens

problem deal with that point.
As stated above, some other publications study variants of the algorithm that find only one solution which is, in

some sense, close to a given permutation or to a permutation generated at random. In this article, we concentrate on
algorithms finding the full subsets Qn and Tn.

An important point in the implementation is how the actual state of the search is represented in the program. Coming
from mathematical notation, the use of arrays is the common method. Some aspects of the algorithm are described that
way in the following text.

However, the run time can often be improved by avoiding arrays with their indexing. Instead, we use data structures
for every cell and for lines of interest, and we chain them. Especially, for backtracking, unlinking and relinking may
be an elegant implementation.

These points are handled as implementation details and not explained further here; so, speaking of arrays in the
following does not necessarily mean that arrays and indexing are used in the author’s programs.

Also, it is not the focus of this article to compare CPU times needed or the effectiveness of different algorithms.
The focus is to present ideas which allow computations that previously needed too much computing effort. Only in
Section 3.4 are some figures given concerning the performance of the improvements.
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Fig. 3. A situation where the program should backtrack.
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1 1 3 1 0 1 0

Fig. 4. A situation where the next line is not the best to continue.

2.2. Further look ahead—not just next row

Most programs just check the next row for the next queen, i.e. they check if there is a free cell in the next row. Many
lectures probably recommend that in order to minimize the effort for a single step. That may well be correct for the
n-queens problem with smaller chessboards, say up to 12 × 12 cells. However, for larger n, it is better to invest more
work.

The author’s program maintains an n × n array containing, for every cell, a count of how many queens threaten that
cell. With that array, the program determines if, in any free row, there is no unthreatened cell left; if so, it backtracks.

To illustrate that: say, we placed queens on rows 1–4 on an 8 × 8 chessboard, threatening all cells of row 7
(see Fig. 3). So, row 7 is free while none of its cells are free. The program will then backtrack and move the queen in
row 4; it will not try to place queens on row 5 and 6, although that may be possible.

A second improvement to the base algorithm: do not necessarily handle the rows in their natural order, but search
for the row with the fewest free cells left. E.g. if we are handling row 3 and detect, as in Fig. 4, that in row 5 only two
free cells are left while there are 3 or 4 in the rows 4, 6, 7 and 8, then we place the next queen in row 5.

In this way, we cut down the tree that must be traversed for the search.
With just this simple improvement, the author has made the search run for the 25 × 25 torus problem.

2.3. Using columns and diagonals also

All other programs that the author knows handle the board row by row. However, that is not necessary. It is only
necessary to split the problem into cases in such a way that the program catches all possibilities. (Placing a queen in
the next row effectively splits the rest of the problem into cases.) For that splitting of the problem, columns are as good
as rows. For the torus problem, we can additionally use diagonals or anti-diagonals.

The order of processing of these split-cases may depend dynamically on the queens that are already on the board.

2.4. Exploitation of symmetries

The main improvement in the algorithm consists in the exploitation of symmetries. That means that the program
searches only few solutions and can find or count the other solutions as symmetric images of them.
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At this point, a historical remark on the use of symmetries in former programs seems in place. In some special
cases, exploitation of symmetry has been implemented already. Yet most programs use only very basic symmetry by
reflection. For the regular n-queens problem, they place the first queen only in the left half of the first line and eventually
multiply the number found by two. For odd n, the case where the first queen is in the middle of the row must be counted
separately. That means that these programs use the action of M.

Schimke [4] went one step further in this direction. His program also recognizes a newly found solution as a rotated
image of a solution that it found previously. That is a use of the action of D4.

Searching for torus solutions, we have to take into account shift operations too. That reduces the range of search
significantly. But programs often use only horizontal translations, usually placing the first queen on the left, bottom
corner (first row, first column), and multiplying the counted solutions by n to get the total number (see, for instance,
[2]). That is a use of the cyclic group Cn which is not mentioned further in this article. So far for the historical remark.

For more intensive application of symmetry, we use a few notions of group theory, as given, e.g. in Kerber [1]. The
n-queens problem is not mentioned in the book but the same ideas may be applied.

The symmetries used for the n-queens problem stem from the groups introduced in 1.1. We use the action of these
groups on Qn and on Tn.

An n-queens solution (an element of Qn or Tn) is called symmetric with respect to a motion (an element of the group)
if and only if it is mapped onto itself by the motion. Or in group theoretic language: if the motion is in the stabilizer of
the solution.

An n-queens solutions p is called symmetric to another solution q if some motion maps p to q.All solutions symmetric
to a given q form an orbit.

In this aspect, the set of all solutions is decomposed to the orbits of the group under discussion. The search for all
solutions is reduced to finding a transversal of all solutions with respect to the group.

Sometimes we can use normalization or—with the same meaning—canonization; that means that we assign a
special element to every orbit. The simplest canonization is to use the smallest element of every orbit for that, but other
canonizations are possible as well, and may be easier to implement.

Considering these symmetries while searching makes the algorithm rather complex; we can avoid that if we save the
solutions in a file and evaluate them later in other programs. In this way, the complexity is transferred to these other
programs.

The idea for the search is to use further restrictions during the search, in order to get as few elements of each orbit
as possible. For that, the author used a classification of Tn which is oriented on geometric aspects. Most of it can also
be applied to the full set Sn.

That classification uses three properties of a permutation that are invariant under the action of D4,n: the minimal
neighbor distance, the length of the longest chain of queens in that distance, called ‘knight length’here, and the minimal
distance at the end of such a chain, called ‘secondary minimal distance’.

These three properties are defined formally in this subsection, and used in the following subsections.
The first property is the minimal distance on a neighbor row or column; for that, we have the following

definition:

Definition 2.1. The neighbor distance at i of p ∈ Sn is

dp,i := min({|(p(i + k) − p(i))| | k = ±1}
∪ {n − |(p(i + k) − p(i))| | k = ±1}
∪ {|p−1(p(i) + k) − i| | k = ±1}
∪ {n − |p−1(p(i) + k) − i| | k = ±1}). (10)

The minimal neighbor distance of p ∈ Sn, written as dp, is the minimum of dp,i , for 0� i < n.

As all is finite, the minimum always exists. Note that this definition differs from the Manhattan distance: it is restricted
to cells on adjacent rows or adjacent columns, and in this case, the neighbor distance is Manhattan distance minus one.

With that definition, we have two lemmata:
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Lemma 2.2. The minimal neighbor distance is a class function on Tn and on Sn, under the action of D4,n. Or formally,

dp = d�(p) for all � ∈ D4,n. (11)

Proof. Before we start the proof, we should interpret the four lines of definition (10). The first two give the distance
of queen (i, p(i)) to the queens on the adjacent columns. The first line is the distance within the interval [0, n − 1],
and the second line is the distance over the border where 0 and n are identified. Lines three and four give the distance
to queens on the adjacent rows in the same way.

It is sufficient to check formula (11) for the generators of the group D4,n. That means we must check it for translations,
the 90◦ rotation R, and for the vertical reflection M . Let � be such a mapping. � maps both the permutation p, and the
basic set Fn. It maps the cell (i, p(i)) of (10) to some cell (x, y). We show that dp,i = d�(p),x .

If � is a translation or vertical reflection, queens on adjacent rows are mapped to adjacent rows, and queens on
adjacent columns to adjacent columns. If � is the 90◦ rotation, rows are mapped to columns and vice versa. So, a single
term of (10) may change its position in the four lines of the formula, but it stays in the set over which the minimum is
taken. Hence, dp,i = d�(p),x .

To come from dp,i to dp, we take the minimum over i = 0 . . . n − 1. For d�(p), we must take the minimum over
x = 0 . . . n − 1 where x is defined as above. Since �(p) is a permutation, that is true. The minimum is taken over the
same set of numbers, whence dp = d�(p). �

Lemma 2.3. The minimal neighbor distance dp of a permutation p is k if and only if there is an � ∈ D4,n such that
�(p)(0) = 0 and �(p)(1) = k, and there is no � ∈ D4,n such that �(p)(0) = 0 and �(p)(1) < k.

Proof. We first prove the necessity of the two conditions. Let p be a permutation and let k be its minimal neighbor
distance, i.e. dp =k. We construct an appropriate � by composing some generator elements of D4,n. Due to the finiteness
of all variables, there must be some i such that dp = dp,i . That means that the queen at (i, p(i)) has some neighbor
queen (x, y) on an adjacent row or column, in minimal distance. We take the translation H−i ◦ V −p(i) as first part;
that maps the first queen to (0, 0). The neighbor queen (x, y) is then mapped to one of the eight cells (1, k), (1, −k),
(−1, k), (−1, −k), (k, 1), (k, −1), (−k, 1), or (−k, −1). If it is at (1, k), we need no further mapping. Otherwise we
compose the translation with a vertical reflection and perhaps a rotation, depending on the position of the neighbor
queen; the rotation may be 90◦, 180◦, or 270◦.

The second condition is shown by contradiction: if there is a mapping � such that �(p)(0) = 0 and �(p)(1) = k′, for
some k′ < k, then the minimal neighbor distance of �(p) is less or equal to k′. By virtue of the first lemma, the minimal
neighbor distance of �(p) is equal to the minimal neighbor distance of p which is k. Thus k�k′ < k, a contradiction.

The sufficiency of the two conditions is clear from the same arguments. �

It is clear that dp �n/2. If dp =1, then two ‘queens’ of p are diagonal neighbors, perhaps at the horizontal or vertical
margin. That cannot happen for torus solutions, but is possible for regular n-queens solutions.

If dp,i = 2 for some p ∈ Tn and some i, then the queen at (i, p(i)) has a neighbor in the distance of a knight’s move.
We generalize that to calculate the second property for the classification, the length of a knight chain in p.

Definition 2.4. A permutationp ∈ Sn contains a knight’s chain of length l, if there is an� ∈ D4,n such that�(p)(k)=kdp

for all k < l. The knight length of p is the maximal l such that p contains a knight’s chain of length l.
By definition of dp, the knight’s length of a permutation is greater than or equal to 2.
Again, the knight length of p is a class function on Tn.
What happens at the end of the longest chain? That leads to the third property, the ‘secondary minimal distance’.

But here we have the problem that the chain may be endless, forming a sort of circle. In this case, the chain has length
n and contains all queens, as the first coordinate in the definition has step size 1.

Definition 2.5. Let p ∈ Sn be a permutation, l be its knight length, and l < n. p has secondary minimal distance e if
there is an � ∈ D4,n such that �(p)(k) = kdp for all k < l, and �(p)(l) = �(p)(l − 1) + e mod n, and if e is minimal
with that property. If l = n, then the secondary minimal distance of p is 0.

Also the secondary minimal distance is a class function.
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For some permutations, we use also a fourth and last aspect for the classification. For that, we divide the set of
permutations of knight length 2 in two distinct subsets. For a p in the first subset, a queen having one ‘knight neighbor’
may have a second knight neighbor (in perpendicular direction), and there must be at least one such queen. All other
permutations of knight length 2 are in the other subset.

2.5. Splitting search runs and compiling results

Many programs scan the tree of possible solutions, just counting the solutions found. Of course, as the number of
solutions increases rapidly, it costs too much space to save them all.

The improved algorithm uses symmetries to store the solutions; in the end, it provides a transversal of all solutions,
with respect to some group acting on them.

That allows splitting of the search runs and compiling the results afterwards.
In the search for T29, the author started different runs of the program; the runs used different parameters which were

given manually (in parameter files). Mostly, the runs searched for different classes of solutions, in the classification of
the previous subsection.

To do that, we need further programs, to sort and merge the raw files generated by the different search runs. These
programs transform the solutions to a canonical form, and eliminate solutions found twice or more often.

To control the different runs of the search program, the author’s program has implemented several commands. As we
refer to them in the next section, they are introduced here. Commands for placing queens and blocking cells statically
are described here, further commands in the next subsection.

2.6. Static assignment and blocking of cells

The commandSet 1 1 instructs the program to set a queen on cell 1/1 for the complete run. SeveralSet commands
are allowed but they should not contradict each other.

The commandBlock 1 1 blocks cell 1/1 for the complete run. No queen may be set on that cell. Several commands
of this type are also possible for a run.

2.7. Dynamic blocking of cells

To avoid solutions of orbits that were already found, the algorithm uses dynamic blocking of cells. To be more
specific: with every queen set during the run, the algorithm checks whether there is some condition to block further
cells. If so, the affected cells will be blocked. They will be unblocked again if the queen raising the condition is removed
during backtracking.

The effort for every step increases, but overall the run accelerates significantly as it searches only fewer, more special
solutions. It concentrates on finding solutions of orbits that are not yet ‘touched’.

Note that the algorithm does not strictly exclude finding solutions of the same orbit twice or several times; but it
reduces the number of hits per orbit from say 100 to some value between 2 and 10.

The command MinDist 4 instructs the program to maintain a minimal distance between the queens on neighbored
lines. That is visualized in Fig. 5. Line means row and column here, not including — as above — (anti-)diagonals.

If, for instance, a queen is on 7/9, then with MinDist 4 no queens may be on the cells marked with ‘b’, i.e. 6/6,
6/7, 6/11, 6/12, 8/6, 8/7, 8/11, 8/12, 4/8, 5/8, 9/8, 10/8, 4/10, 5/10, 9/10 and 10/10. This command is allowed only once
per run.

The command SecMinDist 6 causes the program to ensure another minimal distance for all pairs of queens that
are set in the primary minimal distance. As the previous command, this also makes sense only once per run.

An example is given in Fig. 6. We have the two commands MinDist 2 and SecMinDist 6 together with queens
on 7/9 and 8/7.

That makes the program block the cells 6/11, 6/12, 6/13, 6/14 on the left side of the ‘MinDist pair’, and 9/5, 9/4, 9/3,
and 9/2 on the right side.

The command NoKnightLine tells the program never to set three queens in a ‘knight’s line’.
For example (Fig. 7), queens on 4/3, 6/4 and 8/5 are forbidden. If there are queens on 4/3 and 6/4, then cell 8/5 is
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Fig. 5. Cells blocked as effect of command MinDist 4.
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Fig. 6. Cells blocked as effect of command SecMinDist 6.
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Fig. 7. The two cells that would establish a knight’s line, together with the two queens, marked with ‘b’, are blocked as an effect of the command
NoKnightLine. The cells marked with ‘a’ are still allowed.

blocked, as is cell 2/2. A third queen in perpendicular direction—that would be on 5/1 or 3/5 for the first queen of the
example—is allowed.

The command SingleKnight forbids, for two queens in knight’s distance, also further ‘knight neighbors’ in
perpendicular direction. That is shown in Fig. 8.
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Fig. 8. Effect of command SingleKnight: each queen may have at most one ‘knight neighbor’.

2.8. Further, larger groups of symmetries

Further groups of mappings which map the chessboard onto itself are of interest. First, we can go from congruent
mappings to similar mappings. The author has thought of exploiting the action of the group Simn introduced in 1.3.2
for the search but had not yet pursued that idea when this article was prepared. For T29, the action was used only to
reduce the space for the transversals which are stored. Having a transversal of torus congruence, we can construct a
transversal for similarity.

The use of affine motions on the torus, i.e. of Affn may lead to even more effective search algorithms, but that is still
open. At least, it will save space for storing transversals of the solutions.

The problem with Affn is that it does not act on Tn. There is an action on the larger setPn(Fn); if we have an orbit,
we must investigate which elements of it are solutions.

By the way: T5, T7 and T11 have only one orbit under the action of this group. All solutions in these sets are affine
images of the main diagonal.

3. Search of T29

3.1. Remark on the starting point

The author used the group of congruent motions on the torus. For canonization (i.e. to see simply if a solution was
found earlier), the sort and merge program transformed every solution to the lowest element of its orbit, in alphabetic
order.

The different steps of the search were oriented on the classification given in 2.4.

3.2. Steps of the search

Searching the torus solutions for the 29 × 29 board was done in the following steps:
First, the author searched all solutions that have at least three queens in a ‘knight line’ of minimal neighbor

distance 2. That was done by the following commands for the search program:
Set 1 1
Set 2 3
Set 3 5
To keep the single runs small, he added a fourth queen in the fourth row. On the other hand, he blocked some cells to

make sure that the knight line starts at 1/1, and to avoid solutions found already by their symmetric image. That gives,
for instance, the complete command set:
Set 1 1
Set 2 3
Set 3 5
Set 4 10
Block 29 28
Block 29 27
Block 29 26
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Table 1
Number of orbits under action of D4,n, depending on size

Size Number Size Number Size Number

1 0 29 0 841 0
2 0 58 1 1682 1215
4 0 116 6 3364 121,487
8 0 232 0 6728 89,997,968

In this way, the search avoided—by static blocking of cells—finding too often solutions p with dp = 2, lp = 3 and
secondary minimal distance 3 or 4.

Then the author searched solutions having dp = 2 and lp = 2. They have one or several pairs of queens in knight’s
distance but not in a knight line. The author further divided these cases into cases where one of the queens has a second
‘knight neighbor’at right angles to the first, and those cases where it has not. The first case, he sorted as ‘NoKnightLine’,
the second as ‘SingleKnight’. In the latter case, which needs most effort, he additionally used SecMinDist.

An example for the commands for SingleKnight:
Set 1 1
Set 2 3
Set 3 7
SecMinDist 4
SingleKnight
and perhaps another fixed queen, just for partitioning the runs.
An example for the commands for NoKnightLine:
Set 1 1
Set 2 3
Set 4 2
NoKnightLine
and also perhaps another fixed queen for partitioning the runs. These runs used (by the commands) dynamic blocking

of cells.
Finally, the author searched the solutions having a higher minimal distance (dp > 2), as ‘MinDist’. These runs had

the commands, for example:
Set 1 1
Set 2 5
Block 29 26
MinDist 4
and perhaps more partitioning.

3.3. Results for T29

Table 1 gives the number of orbits for the action of congruent motions, depending on the size of the orbit. As each
orbit is isomorphic to the quotient group of the original group by the stabilizer of the orbit, all sizes are divisors of the
order which is 6728 = 8 ∗ 29 ∗ 29. The table is organized by the divisors.

Table 2 shows the distribution of the orbits, depending on the search types which we discussed in the previous
sections.

From the results in Table 2, we compute in Table 3 the numbers of solutions for each search type and the total number
of solutions, 605,917,055,356.

In Table 4, we show the number of solutions, depending on size of orbit or generator of stabilizer; the generator of
stabilizer is taken up to a conjugation.

The size of an orbit allows one to say what the generators of the stabilizer are, up to some conjugation; that is because
no n-queens solution has M (a reflection) as stabilizer, and also combinations of shift and reflection are impossible for
torus solutions, as n must be odd. That is not true for regular n-queens solutions, where n can be even. Indeed, some of
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Table 2
Number of T29 orbits depending on the search type

Size 1–3–5 NoKnightLine SingleKnight MinDist Sum orbits

29 0
58 1 1

116 1 5 6
232 0

841 0
1682 128 80 560 447 1215
3364 24,819 9458 74,408 12,802 121,487
6728 13,451,061 17,072,964 58,416,976 1,056,967 89,997,968

Orbits 13,476,009 17,082,502 58,491,944 1,070,222 90,120,677

Table 3
Number of T29 solutions depending on the search type

1–3–5 90,582,444,936 14.9% NoKnightLine 114,898,853,064 19.0%
SingleKnight 393,280,664,960 64.9% MinDist > 2 7,155,092,396 1.2%

Table 4
Number of T29 solutions depending on symmetry type

Size Generator of stabilizer Number of solutions

58 Hk ◦ V, k ∈ {12, 17}, R 58
116 Hk ◦ V, 2�k�27, k /∈ {12, 17}, R2 696

1682 R 2,043,630
3364 R2 408,682,268
6728 605,506,328,704

the classical 8-queens solutions have M ◦ V 4 as stabilizer. Therefore, it is natural that we have no orbits of size 29 or
841: they would have some reflection in their stabilizers, and that is impossible for n-queens solutions.

There is also a simple reason why there is no orbit of size 232: such an orbit has some translation in it; for n-queens
solutions, or every set of 29 cells, that means that all these cells lie ‘in a straight line’ and that also has a 180◦ rotation
in its stabilizer.

3.4. Some figures concerning performance

Real performance data would require a discussion of the programming language, of the computers used, and of
program versions. That is not given here, especially since the program was refined several times during the T29 search.

Instead, the author did two things: firstly, he did a search for T17 with the final version of the program. That is
discussed in the next lines. Secondly, he implemented the standard algorithm in the same environment that was used
for the search, and made a comparison of runtimes for T23 which is given at the end of this subsection.

The new program always counted the number of backtracks. These are given in the following tables. Table 5 shows the
gain due to programming improvements, i.e. look ahead, usage of columns (not only rows) and of diagonals (Sections
2.2 and 2.3).

Table 6 shows the gain achieved by exploitation of symmetry.
For that, the author added five further variants to the first variant. The first variant is only the most elementary

symmetry, placing a first queen on cell 1/1 and multiplying the resulting number by 17, given also in the last row of
Table 5. The other five variants differ in the number of single runs. For instance, variant 2 uses two runs only: one with
fixed queens on 1/1 and 2/3, searching all solutions of MinDist = 2, and a second with only the queen on 1/1 fixed,
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Table 5
Number of backtracks, depending on search algorithm, without use of symmetry

Full First queen Ratio Gain (%) Gain ratio Gain for
search at 1/1 use col./diagonal (%)

No look ahead 226,060,611 13,297,682 17.0
No columns 11,359,621 668,212 17.0 94.97 19.9
No diagonals 9,157,815 538,516 17.0 95.95 24.7 19.41
Without restrictions 7,388,878 434,802 17.0 96.73 30.6 34.93

Table 6
Number of backtracks, depending on different use of symmetry

Variant 2 Variant 3 Variant 4 Variant 5 Variant 6

1Q + min1Dist 3 44,511
2Q + min1Dist 3 3873 3873 3873 3873
2Q + min1Dist 4 463 463 463 463
2Q + min1Dist 5 69 69 69 69
1Q + min1Dist over 5 49 49 49 49

2Q (1/1,2/3) 29,757 29,757
Queen chain 8 11 11 11
Q chain 3 + block 17/16 2137 2137 2137
NoKnightLine 1742 1742 1742
SingleKnight 19,768
SecMinDist 3 1924 1924
SecMinDist 4 1713 1713
SecMinDist 5 1623 1623
SecMinDist 6 959 959
SecMinDist 7 868 868
SecMinDist over 7 4500

SecMinDist 8 916
SecMinDist 9 662
SecMinDist 10 618
SecMinDist over 10 324
Total number of backtracks 74,268 34,211 28,112 19,931 17,951

Improvement ratio
To elementary symmetry 5.9 12.7 15.5 21.8 24.2
To usual search 179 389 473 667 741

and with MinDist�3. Variant 3 splits the run with MinDist�3, and the variants 4–6 split the run for MinDist = 2
(queens at 1/1 and 2/3).

The run with a queen (knight’s) chain of length 8 is inserted only to produce the solution of the endless queen chain.
That allows blocking the cell before the queen chain of length 3, in the next line of the table, and avoids finding shifted
images of solutions with a longer queens chain too often.

The last line gives the factor that is achieved by both programming improvements and use of symmetry, compared
to the basic algorithm. Other numbers not given here show that the factor increases with the size of the board.

As mentioned above, the author did also a comparison of runtime for T23 (Table 7). That was done on a 900 MHz
Intel computer under Linux (Suse distribution, Version 9.2). The programs are written in Java, JDK 1.5, and ran under
Java(TM) 2 Runtime Environment, Standard Edition, (build 1.5.0 06-b05) and JVM Java HotSpot(TM) Client VM
(build 1.5.0 06-b05, mixed mode, sharing).

The runs for the T29 search were done using the spare time of a 300 MHz Intel computer, over a time of eight months.
A coarse guess for the CPU time on that machine is 5000 h.
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Table 7
CPU times for T23, depending on algorithm and use of symmetry

Classical algorithm New program, New program
only computational using
improvements symmetries

CPU time for search (h) 91.3 1.5 0.1
CPU time for search (s) 328,916 5438 372
CPU time for sort
and evaluation (s) 29
Number of backtracks 187,806,563,266 1,153,202,933 58,719,054
Backtracks per second 571,000 212,000 157,000

Fig. 9. The white queens occupy the same line set as do the black queens.

4. Algorithm of Rivin and Zabih

4.1. Idea of the Rivin–Zabih Algorithm

Rivin and Zabih [3] give an algorithm that is not a backtracking algorithm.
The idea of this algorithm is to shift the focus from the single queens to the line sets that are occupied in a special

situation. There are situations where we come to the same line sets in different ways. A simple example is illustrated
in Fig. 9: both the white and the black queens occupy the same set of rows, columns, diagonals and anti-diagonals.
There is no influence on further queens; if we have a solution with the white queens, we have a solution with the black
queens as well.

The Rivin–Zabih algorithm maintains lists of such sets of lines. Starting with the empty set, it first ‘adds’ queens
in the first row. That means, for every queen that can be placed in the first row, it adds its row, column, diagonal and
anti-diagonal to the set of lines, and stores that new line set in the list of line sets.

Then, it tries to combine every line set with queens on the second row, and looks if that results in a line set already
found. If so, it joins the possibilities leading to the line set, by maintaining a counter with each line set.

That is continued for every line. If there are solutions, the algorithm finishes with one line set containing all rows,
columns and (anti-)diagonals, in the torus case. The counter associated with that line set gives the number of solutions.
In the regular case, the final line sets may differ in their diagonals or anti-diagonals. The number of solutions is the
sum of their counters.

The author has implemented that algorithm. However, it was not of practical use until now; it requires too much
space. A search for T17 failed with 500 MB of main memory; it was possible only after the line sets were written to
disk in portions, and joined there after a row was finished.

Can this algorithm be improved, as it was done with the backtracking algorithm? Two developments can be made
easily.

4.2. Further look ahead

A better look ahead can reduce the number of possible line sets in the lists. Given a line set and a free line, we have to
find out if there are still free cells on that line (recall the slightly different meaning of free for lines and cells, introduced
at the beginning of Section 2.1).
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Fig. 10. A simple conflict; the two queens attack each other on the diagonal.

To be more precise: if L is the set of all rows, columns, diagonals and anti-diagonals, l ∈ L and if a line set G is
given, then

fl,G := l

∖⋃
g∈G

g (12)

is the set of free cells of line l for G. If fl,G is empty for some l /∈ G, then G can be deleted from the list of possible
line sets.

That idea can be extended: if |fl,G| = 1 for some l ∈ L\G, then we can place queens on all such cells; we get a new
line set G′ from that. The test for exhausted lines may be iterated with that G′, if G′ �= L, giving perhaps a G′′, as long
as |fl,G| = 1 for some l ∈ L\G′. The line sets G′, G′′ . . . are constructed just for lookahead; they are not entered in the
list of possible line sets. The original G either remains unchanged in the list, or is deleted from it if some G′ indicates
so.

Another idea is to be more flexible in the order of lines; however, that is probably restricted to the order of rows.
Proceeding also with columns and diagonals or anti-diagonals is complicated, though possible. It has the disadvantage
that we have line sets stemming from different numbers of queens in the list. That is simpler in the backtrack algorithm,
as the data are more ‘local’ in some sense.

One thing can be done easily: each line set G left after the above deletion can give a ‘vote’ for the free rows, just by
|fl,G|, for the free row l, or by some weight function of |fl,G|. The next row is chosen depending on the sum of these
values for all remaining G.

4.3. Splitting runs and compiling results

The idea is the same as in the backtracking algorithm. We start with a given line set, stemming from the fixed queens.
However, the algorithm must be extended: in its original version, it only counts solutions; now we need the set of
solutions. For that, some information must be stored every time that two line sets are joined, i.e. where we found
different ways to come to the same line set. A further program should then generate the solutions from that information.

It is an open point whether the Rivin–Zabih algorithm is of practical use with these enhancements.

5. Application to the regular n-queens problem

A basic idea for using group actions also for the regular case is to view a regular solution as a torus solution with
some flaws; we call these flaws ‘conflicts’.

A conflict means that two queens are placed on the same torus (anti-)diagonal. These conflicts can be resolved, i.e.
the conflicting queens separated, when the solution is shifted so that the two queens are placed on different regular
diagonals, although they are still on the same torus diagonal. We illustrate that with Figs. 10 and 11. In Fig. 11, the
rightmost column is repeated on the left side, outside of the regular chessboard.

By moving the queens two cells to the left, the conflict is separated; the two queens still attack each other as toroidal
queens, but no longer as regular queens. The attack line, i.e. the diagonal that the two queens share, is broken by the
margin.

There may be more than one conflict in a regular n-queens solution. In fact, the old argument of Polya, also given
in the article of Rivin et al. [2], shows that there must be at least one conflict on the diagonals and a second on the
anti-diagonals if n is even.
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Fig. 11. The same conflict separated.

That leads to sets of conflicts, or conflict constellations. As conflict constellations are basically subsets of Zn × Zn,
we have natural action of our groups also on these conflict constellations. That leads to the following idea for the
algorithm: we can first enumerate the conflict constellations; in the second step, we eliminate all conflict constellations
that cannot be resolved or separated in any element of its orbit; and in a third step, we complete the separable conflict
constellations to complete solutions.

Another interesting point in this context is conflict constellations of three cells. The three cells come from at least
two pairs, so one cell must be part of two conflicts. It is impossible for the two other elements also to form a conflict.
So, if we take out the queen belonging to both conflicts, we get a valid placing of n − 1 torus queens. That is what
Schlude and Speaker investigate in [5]. They show that such placements are not always possible, and give conditions
when they exist.

The handling of conflict constellations might also be a feasible way to handle the regular n-queens problem.

6. Final remark

We have shown that the use of finite group actions can improve the search algorithms for both Tn and Qn. The
case of regular n-queens solutions Qn needs some extra effort. The new aspects may also be combined partly with the
Rivin–Zabih algorithm.

Although n-queens solutions are quite simple combinatorial structures, there are still interesting open points.
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